If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-y^2+2y-5)+(7y^2+3y+4)=0
We get rid of parentheses
-y^2+7y^2+2y+3y-5+4=0
We add all the numbers together, and all the variables
6y^2+5y-1=0
a = 6; b = 5; c = -1;
Δ = b2-4ac
Δ = 52-4·6·(-1)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-7}{2*6}=\frac{-12}{12} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+7}{2*6}=\frac{2}{12} =1/6 $
| 5x=-28+32=14 | | -3-k/3k-5=-3/2 | | 14x+9=18x+9 | | 19−4z=7 | | Y=3x-2/2x+5 | | p+13=5 | | /=15s+120 | | 2x-4=3x+25 | | (5x^2-14)=(4x^2-5x) | | 14+9x=18+9x | | b+(6+1/6)=(3+1/2) | | E(t)=2.4t+75 | | 11×+3=4x+10 | | 3z/7=10 | | 61=17+4x | | 49x^2=-56x-17 | | -7/8m=-12 | | 2.5+x=12.5 | | 4+8x=14x-10 | | Y=0.4x-x | | 42=3n | | x-3+45=180 | | 4-k+3=2(3-2k | | 9m2=16 | | 4x+x+10=180 | | (5x+3)3=39 | | n-19.5=2.5n | | 4x+x10=180 | | 1.8(s+3)=72* | | 10x-2=7x+34 | | -5x2=-50 | | (2x-3)2=6 |